Maximal Number of Vertices of Polytopes Defined by F-Probabilities
نویسنده
چکیده
Every F-probability (= coherent probability) F on a finite sample space Ωk with k elements defines a set of classical probabilities in accordance with the interval limits. This set, called “structure” of F , is a convex polytope having dimension ≤ k−1. We prove that the maximal number of vertices of structures is exactly k!.
منابع مشابه
Maximal f-vectors of Minkowski sums of large numbers of polytopes
It is known that in the Minkowski sum of r polytopes in dimension d, with r < d, the number of vertices of the sum can potentially be as high as the product of the number of vertices in each summand [2]. However, the number of vertices for sums of more polytopes was unknown so far. In this paper, we study sums of polytopes in general orientations, and show a linear relation between the number o...
متن کاملThe maximal total irregularity of some connected graphs
The total irregularity of a graph G is defined as 〖irr〗_t (G)=1/2 ∑_(u,v∈V(G))▒〖|d_u-d_v |〗, where d_u denotes the degree of a vertex u∈V(G). In this paper by using the Gini index, we obtain the ordering of the total irregularity index for some classes of connected graphs, with the same number of vertices.
متن کاملDeformed Products and Maximal Shadows of Polytopes
We present a construction of deformed products of polytopes that has as special cases all the known constructions of linear programs with \many pivots," starting with the famous Klee-Minty cubes from 1972. Thus we obtain sharp estimates for the following geometric quantities for d-dimensional simple polytopes with at most n facets: the maximal number of vertices on an increasing path, the maxim...
متن کاملOn the reliability wiener number
One of the generalizations of the Wiener number to weighted graphs is to assign probabilities to edges, meaning that in nonstatic conditions the edge is present only with some probability. The Reliability Wiener number is defined as the sum of reliabilities among pairs of vertices, where the reliability of a pair is the reliability of the most reliable path. Closed expressions are derived for t...
متن کاملClassification of pseudo-symmetric simplicial reflexive polytopes
Gorenstein toric Fano varieties correspond to so called reflexive polytopes. If such a polytope contains a centrally symmetric pair of facets, we call the polytope, respectively the toric variety, pseudo-symmetric. Here we present a complete classification of pseudo-symmetric simplicial reflexive polytopes. This is a generalization of a result of Ewald on pseudosymmetric nonsingular toric Fano ...
متن کامل